Floating elbow injuries in adults: prognostic factors affecting clinical outcomes

Konstantinos Ditsios, MD, PhD*, Achilleas Boutsiadis, MD, Pericles Papadopoulos, MD, PhD, Dimitrios Karataglis, MD, PhD, Panagiotis Givissis, MD, PhD, Ippokratis Hatzokos, MD, PhD, Anastasios Christodoulou, MD, PhD

First Orthopaedic Department of Aristotelian University of Thessaloniki, “G. Papanikolaou” General Hospital, Exohi, Thessaloniki, Greece

Background: Floating elbow fractures in adults are rare and complex injuries with unpredictable outcomes. The present study was designed to assess our experience, analyze possible complications, and illustrate prognostic factors of the final outcome.

Methods: Between 2002 and 2009, 19 patients with floating elbow fractures were treated in our department (mean follow-up, 26 months). The fractures were open in 10 patients (52.6%), and concomitant nerve palsy was present in 10 patients. Although the term “floating elbow” refers only to concomitant ipsilateral humeral and forearm shaft fractures, we also included injuries with intra-articular involvement. We categorized the patients into 4 groups: group I (10 patients) included shaft fractures of humerus and forearm, group IIa (5 patients) and IIb (1 patient) included partial intra-articular injuries, and group III (3 patients) involved only intra-articular comminuted fractures of the elbow region.

Results: Fracture healing was observed 14 weeks postoperatively, except in 2 patients, in which elbow arthroplasty was applied, and in 1 with brachial artery injury. Nine patients with nerve neuropraxia recovered 4 months postoperatively, and tendon transfers were necessary in 1 patient. Recovery in patients with nerve palsy was worse than in those without nerve injury (Minnesota Elbow Performance Score, 73 vs 88.3; Khalfayan score, 72 vs 88.3). In addition, intra-articular involvement (groups II and III) negatively influenced the final clinical outcome compared with isolated shaft fractures (group I: Minnesota Elbow Performance Score, 71.1 vs 86.1; Khalfayan score, 72.67 vs 86.1).

Conclusions: Although the nature of floating elbow injuries is complex, the presence of nerve injury and intra-articular involvement predispose to worse clinical outcomes.

Level of evidence: Level IV, Case Series, Treatment Study.

Keywords: Floating elbow; clinical outcomes; prognostic factors

The Scientific Council of the “G. Papanikolaou” General Hospital approved this the project (Log No: 1970/7.13.2009).

*Reprint requests: Dr Konstantinos Ditsios, General Hospital “G Papanikolaou,” Orthopaedic Department, Exohi, Thessaloniki 57010, Greece.

E-mail address: kostasditsios@gmail.com (K. Ditsios).

In 1980, Stanitski and Micheli17 introduced the term “floating elbow” to describe the injury pattern of ipsilateral supracondylar humerus and forearm axis fractures that “disconnect” the elbow from the remaining limb in children. This description has been extended to adults who...
sustain concomitant fractures of the humerus and forearm in the same extremity. 21

This constellation of skeletal trauma is relatively rare in both children and adults. 7,8,10-13,18-20 The spectrum of the fractures can vary greatly and depends on the force applied on the extremity and its position in space at the time of the incident. Although the term “floating elbow” was initially used only for humeral and forearm shaft fractures, it has been reported that concomitant articular fractures or elbow dislocation, or both, can also be present, leading to a functional joint disconnection from the remainder of the upper limb. 2,13-15,19 In this study, patients with combined humeral or forearm shaft fractures with intra-articular fractures around the elbow joint, which finally resulted in a functional “floating elbow”, were also included.

All authors have emphasized the complexity of these injuries and the potentially unpredictable long-term functional results. 1,15 It has been well documented that surgical intervention has the most dependable clinical outcomes. 7,13,21

The objective of this study is not only to review the treatment methods and the clinical outcome of patients treated in our department but also to identify possible prognostic factors leading to better or worse final results. Our study hypothesis is that final outcomes are not just dependent on the presence of nerve injury or open trauma, but one of the most important factors is the intra-articular extension of these fractures, limiting patient and physician expectations.

Materials and methods

Patients

Between December 2002 and January 2009, 19 patients who sustained floating elbow injury were treated in our orthopedic department. As mentioned above, we defined “floating elbow” trauma not only as shaft fractures of the humerus and the ipsilateral forearm bones but also as intra-articular lesions around the elbow region (distal humerus, radial head, and olecranon). Consequently, we included patients with traumatic shaft or intra-articular fractures, or both, that resulted in a functional floating elbow injury. The study excluded immature patients aged younger than 15 years, osteoporotic patients aged older than 60 years, and patients with rheumatoid arthritis, renal failure, and pathologic fractures.

The cohort comprised 19 patients (16 men and 3 women) who were a mean age of 33.7 years (range, 17-55 years). The dominant upper extremity was affected in 17 patients. Thirteen patients sustained injuries related to motor vehicle accidents, 2 had job-related injuries, and 2 fell from a significant height. A side-sweep injury in an automobile accident led to an open floating elbow in 2 patients.

Open fractures occurred in 10 patients (52.6%). In particular, 3 were open comminuted fractures around the elbow (1 type IIIA and 2 type IIIB according to Gustilo-Anderson classification for open fractures), 4 were type II and 3 were type I open fractures of the humeral or the ulnar shaft only. Finally, 1 sustained an open fracture of the humeral shaft and both of the forearm bones, complicated with brachial artery injury (type IIIC). All open fractures were classified according to the Gustilo-Anderson classification. 5

Patients groups

In an effort to describe these complicated injuries, we categorized patients into 4 groups—types according to the presence or not of an intra-articular fracture (Fig. 1), in the same manner that Fraser and Hunter 1 classified ipsilateral fractures of the femur and tibia in 1978. Group I (10 patients) included a “true floating elbow” injury, with diaphyseal fractures only. Group-type II and III involved articular surface disruption of the elbow; more specifically, patients of group IIIa (5 patients) had a humeral shaft fracture and an intra-articular fracture of the olecranon or the radial head, or both. Patients with type IIb (1 patient) injury had a forearm shaft fracture and intracondylar fracture of the humerus. Type III (3 patients) injury involved intra-articular fractures (commuted in our case series) of the humerus and the olecranon or the radial head, or both.

Surgical management

All patients were managed surgically. The preferred method of treatment for individual patients depended on the character of the fracture (Table I). All open fractures were emergently and initially treated with copious irrigation and surgical debridement.

In the 9 group I patients (patients 1, 4, 8, 10, 13, 14, 17, 18, 19), the humeral and forearm fractures were managed simultaneously with immediate internal fixation using a 4.5-mm LCP plate (Synthes, Paoli, PA, USA) to the humerus and 3.5-mm DCP-LCP plates (Synthes) to the forearm (Fig. 2). Patient 12 in group I had an open type IIIC fracture according to the Gustillo et al classification. The brachial artery was repaired, and the fractures were provisionally stabilized with external fixation. At 8 months post-trauma, the patient underwent final open reduction, internal fixation (ORIF) of the fractures with LCP plates (Synthes) and an iliac bone autograft.

The 5 group IIa patients (patients 2, 3, 7, 9, 15) were treated with internal fixation of humerus (LCP 4.5-mm) and then with ORIF of elbow fractures or with radial head replacement (patient 7).

In the group IIb patient (patient 5), we proceeded with internal fixation of the supra-intracondylar fractures of the humerus using the 3.5-mm anatomic Mayo Clinic Congruent Elbow Plate (Acumed, Hillsboro, OR, USA). The fractures of the ulnar shaft in this patient were treated with ORIF (3.5-mm LCP, Synthes).

Finally, 3 patients were included in group III (intra-articular complex multifragment fracture of the elbow joint, including humeral condyles, olecranon, and radial head). In patients 6 and 11, the open fracture was type IIIB with bone loss (condylar humerus, radial head, olecranon). These patients underwent initial stabilization of the elbow joint with external fixation. Three months later, a total elbow arthroplasty in patient 6 and an elbow hemiarthroplasty with reconstruction of the epicondyles in patient 11 restored joint movement. The last patient of this group (patient 16) underwent acute final surgical stabilization of the fractures using 3.2-mm Twinfix screws for the condyles and the radial head (Stryker Leibinger, Kalamazoo, MI, USA) and a 3.5-mm DCP-LCP plate (Synthes) for the olecranon.
Floating elbow injuries: results, prognostic factors

Radial nerve palsy was observed in 9 patients (47.4%) during the first clinical evaluation, and nerve exploration was performed. In 8 patients, it was only neuropraxia, and function was restored within 3 to 6 months after the initial trauma. In 1 patient, although radial nerve exploration did not show any significant lesion, the nerve did not regain function during the first year of follow-up. Flexor tendons transfer was performed to restore wrist and digits extension. After this period, we encouraged passive and active uniplanar (flexion–extension) exercises of the elbow, with progressively increased range of motion. Rotational movements were allowed 8 to 14 weeks postoperatively, when callus formation was obvious. This program was modified in patients with open fractures, artery injury, or great intra-articular comminution, for example, where the provisional external fixation was replaced by total elbow or hemi-elbow arthroplasty (patients 6 and 11).

Rehabilitation

Rehabilitation of the elbow began early in most patients, when definitive internal fixation was achieved. Specifically, an elbow cast was applied for an average of 7 days as an initial immobilization. After this period, we encouraged passive and active uniplanar (flexion–extension) exercises of the elbow, with progressively increased range of motion. Rotational movements were allowed 8 to 14 weeks postoperatively, when callus formation was obvious. This program was modified in patients with open fractures, artery injury, or great intra-articular comminution, for example, where the provisional external fixation was replaced by total elbow or hemi-elbow arthroplasty (patients 6 and 11).

Functional evaluation

Follow-up averaged 26 months (range, 14–40 months) after the initial injury, depending on the complexity of the fracture and on further surgical interventions needed (patients 3, 6, 7, 11, and 12). All patients underwent a detailed clinical and radiographic examination by the same examiner (A.B.). Final clinical evaluation of the patients included evaluation of pain, elbow range of motion, elbow and grip strength, stability, and daily activity. For this purpose, we preferred the Mayo Elbow Performance Score (MEPS) and a standardized scoring system according to Khalfayan et al. A portable, hand-held isometric dynamometer (Isobex), a Link-German Baseline and a Jamar-Hand Dynamometer (Sammons Preston [now Patterson Medical Holdings], Bolingbrook, IL, USA) were used to measure elbow and grip strength.

Statistical analysis

Statistical analysis was performed using SPSS 18.0 software (SPSS Inc, Chicago, IL USA). In an effort to evaluate the prognostic factors of the final clinical outcomes, the analysis of variance 1-way test was used to compare group-type of the injury and the postoperative final MEPS and Khalfayan Scoring System result. We used the t test to compare final clinical outcomes between patients with and without nerve injury. Probability (P) values of less than 0.05 were considered to be statistically significant.

Results

Fracture healing was observed between 8 and 14 weeks postoperatively, except in patient 12, with open type IIIC fracture, where callus formation was obvious 12 months after the injury, after final ORIF and iliac autograft application. In addition, patients 6 and 11 underwent elbow arthroplasty 3 months after the initial injury. No deep infection or heterotopic ossification complicated fracture treatment.

The mean final arc of motion was 88.9° (range, 30°–110°), the average of elbow strength was 73.68% (range, 40%-100%), and the average of grip strength was 78.75% (range, 50%-100%) compared with the unaffected side. The final functional results of this study were as follows: 8 patients with excellent results, 3 with good, and 8 with fair results according to the MEPS. The mean score for the overall group was 80.26 (range, 60–95). According to the

A. MEPS: excellent >90, good 75-89, fair 60-74, poor <60.
B. Khalfayan Scoring System: excellent 90-100, good 80-89, fair 70-79, poor <70.

Figure 1 Patients grouped by injury type. Group I: diaphyseal fractures of humerus and forearm. Group IIa: humerus shaft fracture and an intra-articular fracture of the olecranon and/or the radial head. Group IIb: Forearm shaft fracture and intracondylar fracture of the humerus. Group III: Intra-articular fractures of the humerus and the olecranon or the radial head, or both.
Table I Details of our study population, including type of injury, treatment, complications, patient groups, and final clinical results

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Fractures</th>
<th>Patient groups</th>
<th>Open-closed</th>
<th>Treatment</th>
<th>Nerve injuries</th>
<th>MEPS</th>
<th>Khalfayan score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>Humerus shaft</td>
<td>Group I</td>
<td>Type II -Humerus shaft</td>
<td>ORIF</td>
<td>No</td>
<td>95</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>Humerus shaft</td>
<td>Group IIa</td>
<td>Type IIIA</td>
<td>ORIF</td>
<td>Radial nerve palsy</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>Humerus shaft Holstein fracture</td>
<td>Group IIa</td>
<td>Type I</td>
<td>ORIF</td>
<td>Radial nerve palsy</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>Humerus shaft</td>
<td>Group I</td>
<td>Type II</td>
<td>ORIF</td>
<td>No</td>
<td>95</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>Humerus supra-intracondylar olecranon</td>
<td>Group IIb</td>
<td>Closed</td>
<td>ORIF</td>
<td>No</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>Distal humerus</td>
<td>Group III</td>
<td>Type IIIB</td>
<td>Initially-Ex-Fix</td>
<td>Ulnar Nerve Palsy</td>
<td>75</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>Humerus shaft</td>
<td>Group IIa</td>
<td>Closed</td>
<td>Humerus-LCP Plate, Radial head arthroplasty, Wrist Ex-Fix</td>
<td>Radial nerve palsy</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>Humerus shaft</td>
<td>Group I</td>
<td>Type II Ulnar Shaft</td>
<td>ORIF</td>
<td>No</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>Humerus shaft</td>
<td>Group IIa</td>
<td>Closed</td>
<td>ORIF</td>
<td>Radial nerve palsy</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>Humerus-shaft + Galleazzi</td>
<td>Group I</td>
<td>Closed</td>
<td>ORIF</td>
<td>No</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>35</td>
<td>Intracondylar humerus + olecranon</td>
<td>Group III</td>
<td>Type IIIB</td>
<td>Initially-Ex-Fix</td>
<td>Finally hemi-elbow arthroplasty</td>
<td>Radial nerve palsy</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>Humerus shaft + ulnar shaft-radius shaft</td>
<td>Group I</td>
<td>Type IIIIC</td>
<td>Initially-Ex-Fix</td>
<td>Finally ORIF</td>
<td>Radial Nerve Palsy</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>Humerus shaft + radius-ulnar shaft</td>
<td>Group I</td>
<td>Type I -Ulna</td>
<td>ORIF</td>
<td>No</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>Humerus Holstein + Galleazzi</td>
<td>Group I</td>
<td>Closed</td>
<td>ORIF</td>
<td>Radial nerve palsy</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>Humerus Holstein + radial head</td>
<td>Group IIa</td>
<td>Closed</td>
<td>ORIF</td>
<td>Radial nerve palsy</td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td>16</td>
<td>55</td>
<td>Humerus Hoffa + olecranon-radial head</td>
<td>Group III</td>
<td>Closed</td>
<td>ORIF</td>
<td>No</td>
<td>65</td>
<td>69</td>
</tr>
<tr>
<td>17</td>
<td>34</td>
<td>Humerus shaft + Monteggia</td>
<td>Group I</td>
<td>Closed</td>
<td>ORIF</td>
<td>No</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
<td>Humerus Holstein + Galleggzi</td>
<td>Group I</td>
<td>Closed</td>
<td>ORIF</td>
<td>Radial nerve palsy</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>19</td>
<td>37</td>
<td>Humerus shaft + radius-ulna shaft</td>
<td>Group I</td>
<td>Type I</td>
<td>ORIF</td>
<td>No</td>
<td>95</td>
<td>94</td>
</tr>
</tbody>
</table>

Ex-Fix, external fixation; MEPS, Minnesota Elbow Performance Score; ORIF, open reduction, internal fixation; TEA, total elbow arthroplasty.
Khalfayan elbow scoring system, 7 patients had excellent results, 2 good, 8 fair, and 2 had poor results. The mean score was 79.73 (range, 53-95).

By Student t test analysis, it was evident that the presence of nerve injury (radial or ulnar nerve palsy) led to worse final functional results according to MEPS (mean, 73) and Khalfayan scoring system (mean, 72). Respectively, patients without nerve palsy recovered better (mean MEPS, 88.34; mean Khalfayan score, 88.3), and the difference was statistically significant ($P < .002$ and $P < .001$, respectively).

Group I patients with isolated shaft fractures had statistically significant better functional results (mean MEPS, 88.5; mean Khalfayan score, 86.1) compared with patients with intra-articular involvement (group IIa, IIb, III; mean MEPS, 71.1, $P < .001$; mean Khalfayan score, 72.67; $P = .01$). In particular, the mean MEPS and Khalfayan scores were, respectively, 72 and 73.6 for group IIa, 70 and 72 for group IIb, and 70 and 71.3 for group III (Table II).

The mean arc of motion was superior in group I patients (97.5°) compared with group II or III (79.4°, $P = .05$). Group-type I injuries also predispose to better overall elbow and grip strength than intra-articular group-type II and III injuries ($P < .005$). In detail, group I patients regained 86% of elbow strength and 88.7% of grip strength. At the final clinical follow-up, elbow and grip strength were 68.3% and 70%, respectively, for group II and 43.3% and 62.5% for group III patients (% uninjured side).

Open trauma injury did not generally predispose to worse functional outcomes ($P = .7$ by analysis of variance test), except in the patient with a type IIIC open fracture, who had the worst functional results.

Discussion

A floating elbow injury is a very rare fracture pattern, usually resulting from high-energy trauma. In most cases it is combined with serious soft-tissue injuries, leading to open fractures or nerve palsy with unpredictable functional outcome.\(^1\,13\,17\,21\) Few investigators, in relatively small patient series, have reported floating elbow injuries in adults,\(^4\,7\,8\,11\,13\,19\,21\) and in most of the cases, their interest was focused on treatment patterns and clinical outcomes (Table III).

Treatment strategies have changed over time. In 1984, Rogers et al\(^13\) reported a 100% nonunion rate in the humerus without rigid fixation. Since then, stable internal or external fixation of all fractures has been accepted as the treatment of choice for floating elbow injuries in adults.\(^15\)

In addition to various methods of treatment, other reports\(^11\,16\,21\) tend to identify factors that would affect final clinical outcomes. According to Pierce and Hodorski\(^11\) and recently to Solomon et al\(^16\) and Yokoyama et al,\(^21\) concomitant radial nerve injuries are prone to lead to worse final clinical elbow scores. Other variables, such as vascular injuries, open fractures, soft tissue condition, or even choice or timing of fixation, failed to reveal statistically significant influence on the final follow-up. Studying our population, we also observed the negative prognostic value of nerve injury on the final MEPS ($P < .002$) and Khalfayan score ($P < .001$).

After reviewing the literature, we emphasize the fact that the initial description of “floating elbow” injuries referred only to midshaft fractures.\(^17\,21\) Concomitant articular fractures or elbow dislocation, or both, leading to a functional joint disconnection from the remainder of the upper limb, has also been reported.\(^2\,13\,14\,19\) Floating elbow injuries have...
only been described using the criteria of the AO Foundation/Oldopaedic Trauma Association for individual long-bone fractures. In 2006, De Carli et al made an effort to categorize “floating dislocated elbow” injuries according to severity and morphologic complexity. The authors, based on their case report and review of the literature, included only dislocated elbows and not all fracture patterns of “floating elbow.”

In an effort to correlate final clinical outcomes and the initial trauma constellation, we categorized all patients into subgroups according to the anatomic fracture involvement. The expected clinical outcome depends on the initial articular fracture. Moreover, the differences of the final elbow scores between the 4 patient groups were statistically significant, enhancing the prognostic value of the initial combination of fracture types.

Our categorization of patients with floating elbow injuries into 4 group-types with considerable homogeneity regarding fracture type, surgical treatment options, and final clinical outcomes, constitute the strength of this study. In addition to the prospective data collection, the same 3 shoulder and elbow surgeons (K.D., P.P., P.G.), with a uniform surgical technique and a common postoperative protocol, performed all procedures, and the same examiner (A.B.) carried out all clinical follow-up examinations. However, bearing in mind the rarity of the injury pattern, we appreciate that the present case study is faced with the limitation of the relatively small study population. Conclusions should therefore be reviewed in light of the aforementioned limitation.

Table III: Previously published studies with floating elbow injuries in adults

<table>
<thead>
<tr>
<th>Patients, No.</th>
<th>Results</th>
<th>Negative prognostic factors</th>
</tr>
</thead>
</table>
| 18 | Khalfayan score
 Group I (n = 11): 83
 Group II (n = 7): 45
 No score used | Nerve injury |
| 14 | Mean Khalfayan score: 79
 No score used | No specific factors identified
 Surgical stabilization needed
 Frequent nerve injuries |
| 21 | Satisfactory result
 130° flexion
 45° extension | No specific factors identified |
| Case report | Excellent Results | No specific factors identified |
| Case report | No score used | No specific factors identified |
| Case report | No score used | No specific factors identified |

Conclusions

Floating elbow is a rare complex injury with unpredictable outcome, despite adhering to the rule of stable and rigid internal fixation. Beyond nerve injuries, anatomic area involvement and, especially, disruption of the articular congruency have been proved to play the most significant role on final clinical result.

Acknowledgment

We acknowledge Vasileios Blanas, graphic designer, for his drawings (Fig. 1).

Disclaimer

The present investigation did not receive any external funding.

The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

References

Floating elbow injuries: results, prognostic factors

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: Click on the Q link to find the query’s location in text</th>
<th>Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Per AMA style, “and/or” is recast. Please confirm the edit change at “of both the humerus…” is correct or adjust as appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>Please confirm Fig 2 caption accurately describes all of the panels shown in the figure or adjust as appropriate.</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>Abbreviations in tables must be defined in the table footnote. Please check this is correct for all tables.</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>Table II: Please clarify the P values in the footnote. Two P values are given, but 3 groups of patients are shown. To which groups do the P values apply?</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
<td></td>
</tr>
</tbody>
</table>

Please check this box if you have no corrections to make to the PDF file

Thank you for your assistance.